RAINWATER HARVESTING A PIECE OF THE WATER MANAGEMENT PUZZLE

The nuts and bolts of rainwater harvesting. How to construct a rainwater catchment system Billy Kniffen Texas AgriLife Extension Service

Limiting factor (nearest minimum)

Open Space Nature's First Rain Catchers

Catching Water On The Land

Big Bluestem, Indian grass and Compass Plant

Change Species or Grazing Strategy?

Junction Medical Hospital

We All Live In The Watershed

Roof-Reliant Landscaping™

Rainwater Harvesting with Cistern Systems in New Mexico

New Mexico Office of the State Engineer 1-800-WATER-NM • www.ose.state.nm.us ©2009 New Mexico Office of the State Engine

The New Mexico Office of the State **Engineer** supports the wise and efficient use of the state's water resources and, therefore, encourages the harvesting and use of rainwater from residential and commercial roof surfaces for onsite landscape irrigation and other on-site domestic uses.

Complex /Active Rainwater Harvesting

Complex water harvesting system with roof catchment, gutter, downspout, storage and drip distribution system.

How to Collect Rainwater

.6 gallons per square foot roof per 1" rainfall 2,000 sq. foot roof X 0.6g (1" rain) = 1,200 gal. 1,200 gal. X 20" rainfall per year= 24,000 gal/yr

Texas AgriLife Extension Service Rainwater Harvesting Calculator

Supply/Demand Calculator http://rainwarerharvesting.tamu.edu

AgriLIFE EXTENSION

Texas A&M Syste

Sizing Gutters

1/16" slope/ft. and 2" per hour
3 gutter - 340 sq'
4" gutter - 720 sq'
5" gutter - 1250 sq'

Vertical Piping/Downspouts

2" - 23 gpm 1,088 sq' roof
3" - 67 gpm 3,220 sq' roof
4" - 144 gpm 6,920 sq' roof

Conveyance Piping Sizing: Horizontal Pipe

Size of Pipe	1/8"/ft. slope gpm	1"/hr	2"/hr	3"/hr	4"/hr	6"/hr
3 "	34	3288	1644	1096	822	548
4	78	7520	3760	2506	1880	1253
5	139	13360	6680	4453	3340	2227
6	222	21400	10700	7133	5350	3566
8	478	46000	23000	15330	11500	7670

SupplyDripline of the building

Roofs and Collection Surfaces

How Big Does The Roof Need To Be?

5' diameter Pi times radius squared 3.14 x 2.5 x 2.5 = 20 square feet 20 x .6 = 11.8 gallons per 1" rain 4" = Full Tank

20 inches = Filled 5 times/yr

Filled 10 Times!

15 Times - Rain Saucers

Gutters and Downspouts

Dry Line vs. Wet Line

ne

.

Dry Line vs. Wet Line

ne

Dry Line vs. Wet Line

Hazen-Williams - Excel

Hazen-Williams Friction (Pressure Loss) Calculator

Chapter 4. Rainwater Harvesting and Hydraulic Calculations

Overflow – From the Bottom or Skimming

Color Makes A Difference In Water Temperature

What is it used for?

Durable and water tight - material
Size - where does it go & how much will
you collect and need
Cost - \$.50 - 2.25+ per gallon collected

Centrifugal 230VAC

Pumps Submergible

Piston Pump 115 VAC

Sump Pump

Distribute Water to Desired Location

Drip Irrigation Rain Garden and Bird Baths Wildlife and Livestock In home Use

Types of Drip Irrigation

Getting Rid of: The Bugs

Bacteria

Virus

Parasites

Protozoa

Ultraviolet Light Disinfection

 Electromagnetic energy (UV light) from source lamp is emitted into a chamber through which water passes

all end uses treated equally

Municipal, Well or Other Supply Line represents an unlimited supply of Potable water for all end uses

represents a finite amount.

Three approaches to rainwater/stormwater management

Cistern managed for water supply

Cistern managed for stormwater control

Cistern managed for BOTH water supply and managed for stormwater control or fire protection

The Bullitt Foundation officially opened its Bullitt Center including net zero energy, waste and water..... a - 56,000-gallon basement cistern.

"There is not going to be enough water in the future,"

The solution? Build thousands of reservoirs in the basements (and around) of buildings, sufficient to hold water to meet the needs of the current and future residents of a city

Peeling back the pavement

A Blueprint for Reinventing Rainwater Management in Canada's Communities

POLIS Project Ecological Governance University of Victoria Law Centre Environmental UNIVERSITY OF VICTORIA

Santa Fe County Ordinance

• Laws & Regulations Santa Fe County, New Mexico, was the first municipality in the United States to create an ordinance requiring any new structure, 2500 heated s.f. or more, to have a rain harvesting system. This ordinance applies to both commercial and residential projects, with commercial projects requiring a higher percentage of total capture as well as larger storage reservoirs.

HB 645 – 2003 Texas Legislature

- Prevents homeowner associations from implementing new covenants banning outdoor water-conserving measures
 - Composting
 - Water efficient landscapes
 - Drip irrigation
 - Rainwater harvesting installations

2011- H.B. No. 3372 / S.B. No. 1073

- (1) on-site reclaimed system technologies, including rainwater harvesting, condensate collection, or cooling tower blow downbe incorporated into the design and construction of:
- (A) each new state building with a roof measuring at least 10,000 square feet;

- ARCSA website <u>www.arcsa.org</u>
- Texas A&M University <u>http://rainwaterharvesting.tamu.</u>
 <u>edu</u>
- Texas Water Development Board <u>http://www.twdb.texas.gov/</u>

Now an ANSI Standard

ARCSA/ASPE 63-2013: Rainwater Catchment Systems

Urban Water Budget – Rainwater Harvesting Scenario

Each Piece of the Puzzle Is Important

Managing Our Watershed and River Requires **<u>TEAMWORK</u>**

Thank You - Billy Kniffen

